Moment-to-moment flight manoeuvres of the female yellow fever mosquito (Aedes aegyptiL.) in response to plumes of carbon dioxide and human skin odour

Author:

Dekker Teun1,Cardé Ring T.1

Affiliation:

1. Department of Entomology, University of California, Riverside, CA 92521, USA

Abstract

SUMMARYOdours are crucial cues enabling female mosquitoes to orient to prospective hosts. However, their in-flight manoeuvres to host odours are virtually unknown. Here we analyzed in 3-D the video records of female Aedes aegypti mosquitoes flying in a wind tunnel in response to host odour plumes that differed in spatial structure and composition. Following a brief (∼0.03 s) encounter with CO2, mosquitoes surged upwind and, in the absence of further encounters, counterturned without displacing upwind. These patterns resemble moth responses to encounter and loss of a filament of pheromone. Moreover, CO2 encounters induced a highly regular pattern of counterturning across the windline in the horizontal (crosswind) and vertical planes, causing the mosquito to transect repeatedly the area where CO2 was previously detected. However, despite the rapid changes across all three axes following an encounter with CO2, the angular velocities remained remarkably constant. This suggests that during these CO2-induced surges mosquitoes stabilize flight through sensors, such as the halteres and Johnston organs, sensitive to Coriolis forces. In contrast to the instantaneous responses of the mosquito CO2, a brief encounter with a filament of human skin odour did not induce a consistent change in mosquito flight. These differential responses were reflected in further experiments with broad plumes. A broad homogeneous plume of skin odour induced rapid upwind flight and source finding, whereas a broad filamentous plume of skin odour lowered activation rates, kinetic responses and source finding compared with homogeneous plumes. Apparently, yellow fever mosquitoes need longer continuous exposure to complex skin-odour blends to induce activation and source finding.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference63 articles.

1. Control of hindlimb posture by wind-sensitive hairs and antennae during locust flight;Arbas;J. Comp. Physiol. A,1986

2. Upwind flight and casting flight: complementary phasic tonic systems used for location of sex pheromone sources by male moths;Baker,1990

3. Pheromone-mediated flight in moths;Baker,1997

4. Moths uses fine tuning for odour resolution;Baker;Nature,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3