Secretion by Toxoplasma gondii of an antigen that appears to become associated with the parasitophorous vacuole membrane upon invasion of the host cell

Author:

Kimata I.1,Tanabe K.1

Affiliation:

1. Department of Medical Zoology, Osaka City University Medical School, Japan.

Abstract

Monoclonal antibodies against Toxoplasma gondii were prepared to characterize antigens of the parasite. Immunoperoxidase staining of parasites fixed with paraformaldehyde and glutaraldehyde (PFAGA) followed by Triton X-100 treatment showed that the antibody of clone I-63 recognized an antigen located in the anterior part of the parasite. When analysed by SDS-PAGE and immunoblotting, the antigen migrated in a 66 × 10(3) Mr region. The parasite antigen diminished greatly in parasites after invasion of host cells, but reappeared around a time when intracellular T. gondii multiplied. Immunodetection on PFAGA-fixed T. gondii-infected cells, whose membranes were permeabilized by freeze-thawing in the presence of 5% glycerol, demonstrated that, immediately after parasite invasion, the I-63 antibody-reactive antigen appeared to become associated with the parasitophorous vacuole (PV) membrane, that had been formed mainly by invagination of the host-cell plasma membrane so as to surround an invading parasite. The antigen remained associated with the PV membrane for some time, but disappeared later when the PV increased in size after the parasites had multiplied several times. These results were strengthened by immunoelectron microscopic observations: the antigen that had been localized at the anterior part of the parasite before invasion appeared in an area of the host cell cytoplasm around the tips of penetrating parasites and, thereafter, extended throughout the surface of the PV membrane when parasites completed invasion. Thus, it appears that the I-63-reactive antigen is secreted by T. gondii upon invasion of the host cell and becomes associated with the PV membrane shortly after invasion.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3