Jumping mechanisms and strategies in moths (Lepidoptera)

Author:

Burrows M.1,Dorosenko M.1

Affiliation:

1. Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, England

Abstract

To test whether jumping launches moths into the air, take-off by 58 species, ranging in mass from 0.1 to 220 mg, was captured in videos at 1000 frames s−1. Three strategies for jumping were identified. First, rapid movements of both middle and hind legs provided propulsion while the wings remained closed. Second, middle and hind legs again provided propulsion but the wings now opened and flapped after take-off. Third, wing and leg movements both began before take-off and led to an earlier transition to powered flight. The middle and hind legs were of similar lengths and were between 10 and 130% longer than the front legs. The rapid depression of the trochantera and extension of the middle tibiae began some 3 ms before similar movements of the hind legs, but their tarsi lost contact with the ground before take-off. Acceleration times ranged from 10 ms in the lightest moths to 25 ms in the heaviest ones. Peak take-off velocities varied from 0.6 to 0.9 m s−1 in all moths, with the fastest jump achieving a velocity of 1.2 m s−1. The energy required to generate the fastest jumps was 1.1 µJ in lighter moths but rose to 62.1 µJ in heavier ones. Mean accelerations ranged from 26 to 90 m s−2 and a maximum force of 9 g was experienced. The highest power output was within the capability of normal muscle so that jumps were powered by direct contractions of muscles without catapult mechanisms or energy storage.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference24 articles.

1. Muscle designed for maximum short-term power output: quail flight muscle;Askew;J. Exp. Biol.,2002

2. The energetics of the jump of the locust Schistocerca gregaria;Bennet-Clark;J. Exp. Biol.,1975

3. The jump of the flea: a study of the energetics and a model of the mechanism;Bennet-Clark;J. Exp. Biol.,1967

4. Force balance in the take-off of a pierid butterfly: relative importance and timing of leg impulsion and aerodynamic forces;Bimbard;J. Exp. Biol.,2013

5. Jumping performance of froghopper insects;Burrows;J. Exp. Biol.,2006

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3