Evaluation of a tandem gas chromatography/time-of-flight mass spectrometry metabolomics platform as a single method to investigate the effect of starvation on whole-animal metabolism in rainbow trout (Oncorhynchus mykiss)

Author:

Baumgarner Bradley L.1,Cooper Bruce R.2

Affiliation:

1. Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN, USA

2. Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, 1203 West State Street, West Lafayette, IN, USA

Abstract

SUMMARY This study was conducted to evaluate the use of a two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC/TOF-MS) metabolomic platform to comprehensively analyze the effect of starvation on whole-animal metabolism in rainbow trout (Oncorhynchus mykiss). Trout were either fed a commercial diet at 2% body mass twice daily or starved for 4 weeks. Metabolomic analysis was conducted on serum, liver and muscle tissue from each fish. Database searching and statistical analysis revealed that concentrations of more than 50 positively identified molecules changed significantly (P<0.05) as a result of starvation. Our results indicate that starving rainbow trout for 4 weeks promotes increased utilization of select tissue fatty acids in liver and muscle. However, starvation did not significantly affect protein catabolism in peripheral tissues, as indicated by reductions in the level of serum amino acids in starved fish. In contrast, starvation appears to promote protein catabolism in liver as the level of methionine, proline and lysine metabolite 2-piperidine carboxylic acid increased significantly. Also, starvation resulted in significant changes in the level of numerous xenobiotics that could indicate the origin of particular feed ingredients and selective retention of these molecules in tissues. We suggest that metabolomic analysis using GC×GC/TOF-MS is an effective tool in studying whole-animal metabolism and the fate of important xenobiotic compounds in rainbow trout as numerous polar and non-polar metabolites were rapidly and accurately profiled using a single method.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference25 articles.

1. Recent developments in comprehensive two-dimensional gas chromatography (GC x GC) IV. Further applications, conclusions and perspectives;Adahchour;Trends Anal. Chem.,2006

2. Gluconeogenesis and amino acid metabolism: inter-organal relations and roles of glutamine and alanine in the amino acid metabolism of fasted rats;Aikawa;J. Biochem.,1973

3. Controlling the false discovery rate: a practical and powerful approach to multiple testing;Benjamini;J. R. Stat. Soc. B,1995

4. Evaluation of n-alkanes and their carbon isotope enrichments (∂13C) as diet composition markers;Bezabih;Animal,2011

5. The effect of dietary composition and insulin on gluconeogenesis in rainbow trout (Salmo gairdneri);Cowey;Br. J. Nutr.,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3