Nitric oxide mediates stretch-induced Ca2+ oscillation in smooth muscle

Author:

Zheng Ji12ORCID,Zhai Kui2,Chen Yingxiao2,Zhang Xu2ORCID,Miao Lin2ORCID,Wei Bin3,Ji Guangju2ORCID

Affiliation:

1. Urological Surgery Research Institute, Southwest Hospital, Third Military Medical University, Gao Tanyan Rd. 30, Chongqing 400038, China

2. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Rd, Beijing 100101, China

3. Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States

Abstract

The stretching of smooth muscle tissue modulates contraction via augmentation of Ca2+ transients, but the mechanism underlying stretch-induced Ca2+ transients is still unknown. We found that mechanical stretching and maintenance of mouse urinary bladder smooth muscle strips and single myocytes at the initial length of 30% and 18%, respectively, resulted in Ca2+ oscillations. Experiments indicated that mechanical stretching remarkably increases the production of nitric oxide (NO) as well as the amplitude and duration of muscle contraction. Stretch-induced Ca2+ oscillations and contractility increases were completely abolished by NO inhibitor L-NAME or eNOS gene inactivation. Moreover, exposure of eNOS knockout myocytes to exogenous NO donor induced Ca2+ oscillations. The stretch-induced Ca2+ oscillations were greatly inhibited by selective IP3R inhibitor xestospongin C and partially inhibited by ryanodine. Moreover, the stretch-induced Ca2+ oscillations were also suppressed by LY294002, but not by the soluble guanylyl cyclase (sGC) inhibitor ODQ. These results suggest that myocytes stretching and maintenance at a certain length resulted in Ca2+ oscillations that is NO dependent and sGC/cGMP independent and results from the activation of PI(3)K in smooth muscle.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Natural Science Foundation Project of CQ

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3