Gli1+ Cells Residing in Bone Sutures Respond to Mechanical Force via IP3R to Mediate Osteogenesis

Author:

Huang Xiaoyao12ORCID,Li Zihan12ORCID,Liu Peisheng123ORCID,Wu Meiling12ORCID,Liu An-qi12ORCID,Hu Chenghu2ORCID,Liu Xuemei12ORCID,Guo Hao12ORCID,Yang Xiaoxue1ORCID,Guo Xiaohe1ORCID,Li Bei2ORCID,He Xiaoning2ORCID,Xuan Kun1ORCID,Jin Yan2ORCID

Affiliation:

1. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China

2. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China

3. College of Life Science, Northwest University, Xi’an, China

Abstract

Early orthodontic correction of skeletal malocclusion takes advantage of mechanical force to stimulate unclosed suture remodeling and to promote bone reconstruction; however, the underlying mechanisms remain largely unclear. Gli1+ cells in maxillofacial sutures have been shown to participate in maxillofacial bone development and damage repair. Nevertheless, it remains to be investigated whether these cells participate in mechanical force-induced bone remodeling during orthodontic treatment of skeletal malocclusion. In this study, rapid maxillary expansion (RME) mouse models and mechanical stretch loading cell models were established using two types of transgenic mice which are able to label Gli1+ cells, and we found that Gli1+ cells participated in mechanical force-induced osteogenesis both in vivo and in vitro. Besides, we found mechanical force-induced osteogenesis through inositol 1,4,5-trisphosphate receptor (IP3R), and we observed for the first time that inhibition of Gli1 suppressed an increase in mechanical force-induced IP3R overexpression, suggesting that Gli1+ cells participate in mechanical force-induced osteogenesis through IP3R. Taken together, this study is the first to demonstrate that Gli1+ cells in maxillofacial sutures are involved in mechanical force-induced bone formation through IP3R during orthodontic treatment of skeletal malocclusion. Furthermore, our results provide novel insights regarding the mechanism of orthodontic treatments of skeletal malocclusion.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3