Affiliation:
1. Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC, Canada, V6T 1Z4
Abstract
The rate of hypoxia induction (RHI) is an important but overlooked dimension of environmental hypoxia that may affect an organism’s survival. We hypothesized that, compared with rapid RHI, gradual RHI will afford an organism more time to alter plastic phenotypes associated with O2 uptake and subsequently reduce the critical O2 tension (Pcrit) of O2 uptake rate (ṀO2). We investigated this by determining Pcrit values for goldfish exposed to short (∼24 min), typical (∼84 min) and long (∼480 min) duration Pcrit trials to represent different RHIs. Consistent with our predictions, long duration Pcrit trials yielded significantly lower Pcrit values (1.0-1.4 kPa) than short and typical duration trials, which did not differ (2.6±0.3 and 2.5±0.2 kPa, respectively). Parallel experiments revealed these time-related shifts in Pcrit were associated with changes in aspects of the O2 transport cascade: gill surface areas and haemoglobin-O2 binding affinities were significantly higher in fish exposed to gradual RHIs over 480 min than fish exposed to rapid RHIs over 60 min. Our results also revealed that the choice of respirometric technique (i.e., closed versus intermittent) does not affect Pcrit or routine ṀO2, despite the significantly reduced water pH and elevated CO2 and ammonia levels measured following closed-circuit Pcrit trials of ∼90 min. Together, our results demonstrate that gradual RHIs result in alterations to physiological parameters that enhance O2 uptake in hypoxic environments. An organism’s innate Pcrit is therefore most accurately determined using rapid RHIs (<90 min) so as to avoid the confounding effects of hypoxic acclimation.
Funder
Natural Sciences and Engineering Research Council of Canada
University of British Columbia
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献