Affiliation:
1. Department of Anatomy, University of Cambridge, Downing Street,Cambridge CB2 3DY, UK
Abstract
SUMMARYThe kinematics and hydrodynamics of free-swimming mayfly larvae(Chloeon dipterum) were investigated with the aid of a simple wake visualisation technique (tracer dyes) and drag measurements on dead insects. The basic swimming movement consists of a high-amplitude dorso-ventral undulation and, during continuous swimming, this produces a wake of ring vortices shed alternately to the dorsal and ventral sides of the body. The ring vortices propagate laterally away from the body at an angle of approximately 80° relative to dead aft of the swimming line. Thus, mayfly larvae, like damsel-fly larvae, resemble eels in producing a wake consisting of separate vortices that propagate laterally rather than the reverse von Karman vortex street characteristic of most caudal fin swimming fish. The thrust estimated from the momentum in the wake of swimming mayfly larvae was comparable with the drag measured on dead specimens. Possible sources of error in these estimates are discussed, but the conclusion is reached that even though only 14% of the total force generated by vortex production is directed forwards, it is still sufficient to account for the thrust required for steady locomotion.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献