Affiliation:
1. Department of Anatomy, Downing Street, Cambridge CB2 3DY, UK
Abstract
SUMMARY
The kinematics and hydrodynamics of free-swimming pupal and larval (final-instar) culicids were investigated using videography and a simple wake-visualisation technique (dyes). In both cases, swimming is based on a technique of high-amplitude, side-to-side (larva) or up-and-down (pupa) bending of the body. The pupa possesses a pair of plate-like abdominal paddles; the larval abdominal paddle consists of a fan of closely spaced bristles which, at the Reynolds numbers involved, behaves like a continuous surface. Wake visualisation showed that each half-stroke of the swimming cycle produces a discrete ring vortex that is convected away from the body.
Consecutive vortices are produced first to one side then to the other of the mean swimming path, the convection axis being inclined at approximately 25° away from dead aft. Pupal and larval culicids therefore resemble fish in using the momentum injected into the water to generate thrust. Preliminary calculations for the pupa suggest that each vortex contains sufficient momentum to account for that added to the body with each half-stroke. The possibility is discussed that the side-to-side flexural technique may allow an interaction between body and tail flows in the production of vorticity.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献