The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus)

Author:

Tritico H. M.1,Cotel A. J.2

Affiliation:

1. Youngstown State University, 1 University Plaza, Youngstown, OH 44555, USA

2. University of Michigan, 2340 GG Brown Building, Ann Arbor, MI 48109, USA

Abstract

SUMMARY The effect of turbulent eddy diameter, vorticity and orientation on the 2 min critical swimming speed and stability of creek chub (Semotilus atromaculatus) is reported. Turbulent eddies were visualized and their properties were quantified using particle image velocimetry (PIV). Flow fields with an increasing range in eddy diameter were created by inserting cylinder arrays upstream from the swimming test section. Eddy vorticity increased with increasing velocity. Two orientations of eddies, eddies spinning about a vertical axis and eddies spinning about a horizontal (wall-to-wall) axis, were investigated. Stability challenges were not observed until the largest (95th percentile) eddy diameters reached 76% of the fish body total length. Under these conditions fish were observed to spin in an orientation consistent with the rotational axis of the large eddies and translate downstream. These losses in postural control were termed ‘spills’. Spills were 230% more frequent and lasted 24% longer in turbulent flow fields dominated by horizontal eddies than by vertical eddies of the same diameter. The onset of spills coincided with a 10% and 22% reduction in critical swimming speed in turbulent flows dominated by large vertical and horizontal eddies, respectively. These observations confirm predictions by Pavlov et al., Cada and Odeh, Lupandin, and Liao that the eddy diameter, vorticity and orientation play an important role in the swimming capacity of fishes.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference68 articles.

1. Flow characteristics of circular cylinders arranged side-by-side in shallow water;Akilli;Flow Meas. Instrument.,2004

2. Nekton

3. Decay of vorticity in isotropic turbulence;Batchelor;Proc. R. Soc. Lond. Ser. A,1947

4. Linking Scales of flow variability to lotic ecosystem structure and function;Biggs;River Res. Applications,2005

5. Energy required for swimming by young sockeye salmon with a comparison of drag force on a dead fish;Brett;Trans. R. Soc. Can.,1963

Cited by 185 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3