Anchor chains—A simple low‐cost device to assist passage of small‐bodied mass fish

Author:

Harley Jason1ORCID,Wong Hui Ling1ORCID,Chanson Hubert1ORCID

Affiliation:

1. School of Civil Engineering The University of Queensland Brisbane Queensland Australia

Abstract

AbstractAttention has been placed on a variety of barriers that hinder fish passage in modern times. The most prevalent fish barriers were culverts which have negatively impacted waterway connectivity and fish habitats. For small‐bodied mass fish, high barrel velocities and turbulence have reduced fish swimming performance because of their weak swimming capabilities. In the present study, physical testing was conducted under controlled flow conditions to assess the extent and magnitude of turbulence characteristics, secondary flow and low‐velocity zones in a 0.5‐m‐wide box culvert barrel. Two cases were investigated; a reference case consisting of a smooth rectangular channel and a low‐cost design solution to improve upstream fish migration consisting of a single galvanized anchor chain fitted within a smooth rectangular channel. The single anchor chain was positioned towards one corner of the channel to induce asymmetric flow, reducing overall energy losses and enhancing the existing low‐velocity zone in the adjacent channel corner. The anchor chain induced a strong turbulent flow motion away from the anchor chain, characterized by higher Reynolds stress and turbulent kinetic energy, along with a distinct channel flow asymmetry. Conversely, the low‐velocity zone, between the anchor chain and the bottom channel corner, was significantly expanded with reduced longitudinal mean velocities and turbulent scales. Whilst the anchor chain link contributed to some complex localized wake flow, the anchor chain also influenced the distributions of normal turbulent stresses (v'z2 – v'y2), which in turn influenced the location of secondary flow cells. This secondary flow redirected low momentum fluid into the low‐velocity zones, setting the conditions for the favorable upstream passage of small‐bodied mass fish species.

Publisher

Wiley

Reference81 articles.

1. Ball J. Babister M. Nathan R. Weeks W. Weinmann E. Retallick M. &Testoni I.(Eds.). (2019).Australian rainfall and runoff: A guide to flood estimation Commonwealth of Australia Geoscience Australia.

2. Moving beyond fitting fish into equations: Progressing the fish passage debate in the Anthropocene;Birnie‐Gauvin K.;Aquatic Conservation: Marine and Freshwater Ecosystems,2019

3. Using small triangular baffles to facilitate upstream fish passage in standard box culverts

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3