Promotion of lens epithelial-fiber differentiation by the C-terminus of connexin 45.6 – a role independent of gap junction communication

Author:

Banks Eric A.1,Yu X. Sean1,Shi Qian1,Jiang Jean X.1

Affiliation:

1. Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA

Abstract

We previously reported that, among the three connexins expressed in chick lens, overexpression of connexin (Cx) 45.6, not Cx43 or Cx56, stimulates lens cell differentiation; however, the underlying mechanism responsible for this effect is unclear. Here, we took advantage of naturally occurring loss-of-gap-junction function mutations of Cx50 (ortholog of chick Cx45.6) and generated the corresponding site mutants in Cx45.6: Cx45.6(D47A) and Cx45.6(P88S). In contrast to wild-type Cx45.6, the mutants failed to form functional gap junctions, and Cx45.6(P88S) and, to a lesser degree, Cx45.6(D47A) functioned in a dominant-negative manner. Interestingly, overexpression of both mutants incapable of forming gap junctions significantly increased epithelial-fiber differentiation to a level comparable to that of wild-type Cx45.6. To map the functional domain of Cx45.6, we generated a C-terminus chimera as well as deletion mutants. Overexpression of Cx56*45.6C, the mutant in which the C-terminus of Cx56 was replaced with that of Cx45.6, had a stimulatory effect on lens cell differentiation similar to that of Cx45.6. However, cells overexpressing Cx45.6*56C, the mutant in which C-terminus of Cx45.6 was replaced with that of Cx56, and Cx45.6(–C), in which the C-terminus was deleted, failed to promote differentiation. Taken together, we conclude that the expression of Cx45.6, but not Cx45.6-dependent gap junction channels, is involved in lens epithelial-fiber cell differentiation, and the C-terminal domain of Cx45.6 plays a predominant role in mediating this process.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3