Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase?

Author:

Mir Mustafa1ORCID,Bickmore Wendy2ORCID,Furlong Eileen E. M.3ORCID,Narlikar Geeta4ORCID

Affiliation:

1. Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA

2. Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK

3. European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany

4. Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA

Abstract

ABSTRACT In the past decade, two major advances in our understanding of nuclear organization have taken the field of gene regulation by storm. First, technologies that can analyze the three-dimensional conformation of chromatin have revealed how the genome is organized and have provided novel insights into how regulatory regions in the genome interact. Second, the recognition that many proteins can form membraneless compartments through liquid-liquid phase separation (LLPS) has challenged long-standing notions of how proteins within the nucleus are organized and has offered a tantalizing general mechanism by which many aspects of nuclear function may be regulated. However, the functional roles of chromatin topology and LLPS in regulating gene expression remain poorly understood. These topics were discussed with great fervor during an open discussion held at a recent workshop titled ‘Chromatin-based regulation of development’ organized by The Company of Biologists. Here, we summarize the major points covered during this debate and discuss how they tie into current thinking in the field of gene regulation.

Funder

Medical Research Council

National Institutes of Health

European Research Council

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3