Functional analysis of protein interactions using coupled bi-fluorescence complementation/GFP nanobody techniques

Author:

Miyake Tetsuaki123,McDermott John C123ORCID

Affiliation:

1. Department of Biology, York University , Toronto , ON, M3J 1P3, Canada

2. Muscle Health Research Centre (MHRC) , York University, Toronto , ON, M3J 1P3 , Canada

3. Centre for Research in Biomolecular Interactions (CRBI), York University , Toronto , ON, M3J 1P3 , Canada

Abstract

Abstract Transcription factors (TFs) form homo- or hetero-dimeric DNA binding complexes along with associated co-regulators that can have transcriptional repressor or activator functions. Defining the specific composition of the complexes is therefore key to understanding their biological role. Here, we utilized bimolecular fluorescence complementation (BiFC) to visualize the formation of defined TF dimers and associated co-regulators derived from the activator protein-1 (AP-1) and myocyte enhancer factor 2 (MEF2) families. Firstly, BiFC signals were observed in cells co-expressing TFs tagged with complimentary combinations of the split fluorescent protein, demonstrating the engineered formation of defined dimer complexes. Next, we applied this approach and determined that defined AP-1 dimers localized at discrete sub-nuclear locations. Subsequently, a combination of BiFC coupled with GFP binding peptide (GBP)-nanotrap allowed observation of protein-protein interactions between a co-regulator, HDAC4, and defined BiFC-MEF2 engineered dimers. To determine transactivation properties of defined TF dimers in a cellular system, the Gal4-DNA binding domain fused to GBP was utilized to assess the transcriptional properties of the BiFC-TF dimers using a generically applicable Gal4/UAS luciferase reporter gene assay system. Here, we report efficacy of a BiFC/GBP-nanobody approach that allows engineering, visualization, and functional analysis of defined TF dimers.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes of Health Research

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3