The origin of spicule-forming cells in a ‘primitive’ sea urchin (Eucidaris tribuloides) which appears to lack primary mesenchyme cells

Author:

Wray G.A.1,McClay D.R.1

Affiliation:

1. Department of Zoology, Duke University, Durham, NC 27706.

Abstract

The calcareous larval skeleton of euechinoid sea urchins is synthesized by primary mesenchyme cells which ingress prior to gastrulation. In embryos of the cidaroid sea urchin Eucidaris tribuloides, no mesenchyme cells ingress before gastrulation, yet larvae later contain skeletons. This apparent paradox is resolved by immunochemical, cell lineage and morphological evidence showing that spicule-forming cells of Eucidaris are homologous to primary mesenchyme cells of euechinoids. In particular, these two cell types share expression of two cell lineage-specific gene products, are derived from the same cellular precursors, the micromeres, and undergo a similar migratory phase prior to skeletogenesis. Despite these similarities, there are far fewer spicule-forming cells in Eucidaris than in typical euechinoids and they assume a different pattern during spiculogenesis. The homology between Eucidaris spicule-forming cells and euechinoid primary mesenchyme cells indicates that a heterochrony in the time of spicule-forming cell ingression has occurred since the divergence of their respective lineages.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3