The behavioural, digestive and metabolic characteristics of fishes with different foraging strategies

Author:

Fu Shi-Jian1,Zeng Ling-Qing1,Li Xiu-Ming1,Pang Xu1,Cao Zhen-Dong1,Peng Jiang-Lan1,Wang Yu-Xiang12

Affiliation:

1. Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, China

2. Department of Biology, Queen's University, Kingston, Ontario, Canada, K7L 3N6

Abstract

SUMMARY To test the hypothesis that digestion has a more notable physiological effect on ambush foragers than on active foragers, we investigated the behavioural, digestive and metabolic characteristics, as well as the postprandial locomotory capacity, of four species of juvenile fish distributed along the Yangtze River, China, with distinct foraging strategies. The ambush foraging southern catfish (Silurus meridionlis) had the fewest movements per minute (MPM), lowest per cent time spent moving (PTM), slowest critical swimming speed (Ucrit), lowest maintenance metabolism(V̇O2rest) and lowest maximum locomotory metabolism(V̇O2max). However, the southern catfish had the highest feeding level and maximum feeding metabolism(V̇O2peak) and the greatest decrease in Ucrit after consumption of a large meal. Thus, this fish is highly adapted to its ambush behavioural strategy and sedentary life style. In the herbivorous grass carp (Ctenopharyngodon idellus), a low digestive capacity led to little change in postprandial locomotory performance, which benefits its frequent grazing behaviour. In this species, the greater amount of energy spent on routine activity and avoiding predators versus Ucrit might be related to its herbivorous life style and high predation risk. The active foraging crucian carp(Carassius auratus) adopts a unique high energy cost strategy that allows for high capacity in both routine activity and digestion, and the great flexibility of its cardio-respiratory capacity (increased V̇O2max after feeding) guarantees a small decrease in Ucrit even after maximum feeding. Finally, the sluggish foraging darkbarbel catfish(Pelteobagrus vachelli) has low digestive and locomotory capacity,but its energy-efficient venomous defence strategy may be related to its abundance. These results show that the digestive, behavioural and metabolic strategies differ among these fish species. The locomotory capacity in the sedentary fishes decreased profoundly after feeding, whereas it decreased little or not at all in the active fishes. The maintenance of high locomotory capacity after eating in the active fishes is probably related to a large metabolic capacity, a lower digestive capacity or an improvement in cardio-respiratory capacity after feeding.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3