Aquatic burst locomotion by hydroplaning and paddling in common eiders (Somateria mollissima)

Author:

Gough William1,Farina Stacy C.2,Fish Frank E.3

Affiliation:

1. Department of Animal Science, Cornell University, USA

2. Department of Ecology and Evolutionary Biology, Cornell University, USA

3. Department of Biology, West Chester University, USA

Abstract

Common eiders (Somateria mollissima) are heavy sea-ducks that spend a large portion of their time swimming at the water surface. Surface swimming generates a bow and hull wave that can constructively interfere and produce wave drag. The speed at which the wavelengths of these waves equal the waterline length of the swimming animal is the hull speed. To increase surface swimming speed beyond the hull speed, an animal must overtake the bow wave. This study found two distinct behaviors that eider ducks used to exceed the hull speed: (1) “steaming,” which involved rapid oaring with the wings to propel the duck along the surface of the water, and (2) “paddle-assisted flying,” during which the ducks lifted their bodies out of the water and used their hind feet to paddle against the surface while flapping their wings in the air. An average hull speed (0.732±0.046 ms−1) was calculated for Somateria mollissima by measuring maximum waterline length from museum specimens. On average, steaming ducks swam 5.5 times faster and paddle-assisted flying ducks moved 6.8 times faster than the hull speed. During steaming, ducks exceeded the hull speed by increasing their body angle and generating dynamic lift to overcome wave drag and hydroplane along the water surface. During paddle-assisted flying, ducks kept their bodies out of the water, thereby avoiding the limitations of wave drag altogether. Both behaviors provided alternatives to flight for these ducks by allowing them to exceed the hull speed while staying at or near the water surface.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3