Signalling by the FGFR-like tyrosine kinase, Kringelchen, is essential for bud detachment in Hydra vulgaris

Author:

Sudhop Stefanie1,Coulier Francois2,Bieller Annette1,Vogt Angelika1,Hotz Tobias1,Hassel Monika1

Affiliation:

1. Philipps University Marburg, FB 17, Morphology and Evolution of Invertebrates,Karl von Frisch Strasse 8, 35032 Marburg, Germany

2. INSERM Unité 119, 27 boulevard Lei Roure, 13009 Marseille, France

Abstract

Signalling through fibroblast growth factors (FGFR) is essential for proper morphogenesis in higher evolved triploblastic organisms. By screening for genes induced during morphogenesis in the diploblastic Hydra, we identified a receptor tyrosine kinase (kringelchen) with high similarity to FGFR tyrosine kinases. The gene is dynamically upregulated during budding, the asexual propagation of Hydra. Activation occurs in body regions, in which the intrinsic positional value changes. During tissue displacement in the early bud, kringelchen RNA is transiently present ubiquitously. A few hours later – coincident with the acquisition of organiser properties by the bud tip – a few cells in the apical tip express the gene strongly. About 20 hours after the onset of evagination, expression is switched on in a ring of cells surrounding the bud base, and shortly thereafter vanishes from the apical expression zone. The basal ring persists in the parent during tissue contraction and foot formation in the young polyp, until several hours after bud detachment. Inhibition of bud detachment by head regeneration results in severe distortion, disruption or even complete loss of the well-defined ring-like expression zone. Inhibition of FGFR signalling by SU5402 or, alternatively, inhibition of translation by phosphorothioate antisense oligonucleotides inhibited detachment of buds, indicating that, despite the dynamic expression pattern,the crucial phase for FGFR signalling in Hydra morphogenesis lies in bud detachment. Although Kringelchen groups with the FGFR family, it is not known whether this protein is able to bind FGFs, which have not been isolated from Hydra so far.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3