Environmental and molecular regulation of asexual reproduction in the sea anemone Nematostella vectensis

Author:

Al-Shaer Layla1ORCID,Leach Whitney2,Baban Noor1,Yagodich Mia1,Gibson Mathew C.2,Layden Michael J.1ORCID

Affiliation:

1. Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA

2. Stowers Institute for Medical Research, Kansas City, MO, USA

Abstract

Cnidarians exhibit incredible reproductive diversity, with most capable of sexual and asexual reproduction. Here, we investigate factors that influence asexual reproduction in the burrowing sea anemone Nematostella vectensis, which can propagate asexually by transverse fission of the body column. By altering culture conditions, we demonstrate that the presence of a burrowing substrate strongly promotes transverse fission. In addition, we show that animal size does not affect fission rates, and that the plane of fission is fixed along the oral–aboral axis of the polyp. Homeobox transcription factors and components of the TGF β , Notch, and FGF signalling pathways are differentially expressed in polyps undergoing physal pinching suggesting they are important regulators of transverse fission. Gene ontology analyses further suggest that during transverse fission the cell cycle is suppressed, and that cell adhesion and patterning mechanisms are downregulated to promote separation of the body column. Finally, we demonstrate that the rate of asexual reproduction is sensitive to population density. Collectively, these experiments provide a foundation for mechanistic studies of asexual reproduction in Nematostella, with implications for understanding the reproductive and regenerative biology of other cnidarian species.

Funder

NIH

Stowers Institute for Medical Research

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3