The dynamic kinetochore-microtubule interface

Author:

Maiato Helder1,DeLuca Jennifer2,Salmon E. D.2,Earnshaw William C.3

Affiliation:

1. Laboratory of Cell Regulation, NYSDH–Division of Molecular Medicine, Wadsworth Center, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, USA

2. Department of Biology, CB#3280, 607 Fordham Hall, University of North Carolina, Chapel Hill, NC 27599, USA

3. Chromosome Structure Group, Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, UK

Abstract

The kinetochore is a control module that both powers and regulates chromosome segregation in mitosis and meiosis. The kinetochore-microtubule interface is remarkably fluid, with the microtubules growing and shrinking at their point of attachment to the kinetochore. Furthermore, the kinetochore itself is highly dynamic, its makeup changing as cells enter mitosis and as it encounters microtubules. Active kinetochores have yet to be isolated or reconstituted, and so the structure remains enigmatic. Nonetheless, recent advances in genetic, bioinformatic and imaging technology mean we are now beginning to understand how kinetochores assemble, bind to microtubules and release them when the connections made are inappropriate, and also how they influence microtubule behaviour. Recent work has begun to elucidate a pathway of kinetochore assembly in animal cells; the work has revealed that many kinetochore components are highly dynamic and that some cycle between kinetochores and spindle poles along microtubules. Further studies of the kinetochore-microtubule interface are illuminating: (1) the role of the Ndc80 complex and components of the Ran-GTPase system in microtubule attachment, force generation and microtubule-dependent inactivation of kinetochore spindle checkpoint activity; (2) the role of chromosomal passenger proteins in the correction of kinetochore attachment errors; and (3) the function of microtubule plus-end tracking proteins, motor depolymerases and other proteins in kinetochore movement on microtubules and movement coupled to microtubule poleward flux.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3