Inhibition of leukocyte locomotion by hyaluronic acid

Author:

Forrester J.V.,Wilkinson P.C.

Abstract

The effect of hyaluronate on neutrophil motility in vitro was studied by the micropore filter technique and by direct visual analysis of the locomotion of neutrophils on glass. Both directed and random locomotion of neutrophils was inhibited by physiological concentrations (0.5-6.0 mg ml(−1)) of hyaluronate in a dose- and molecular weight-dependent manner. Inhibition of cell movement was more pronounced for high molecular weight chemoattractants such as casein than for small chemotactic peptides such as f-Met-Leu-Phe. Chemotactic factor gradient formation in filter chambers was profoundly retarded by hyaluronate, which may partly explain the inhibitory effects of hyaluronate on directed neutrophil locomotion. In addition, hyaluronate inhibited the binding of chemotactic factor to the neutrophil surface. This effect, together with a reduction in cell-to-substratum adhesion, may provide an additional explanation for hyaluronate-induced inhibition of random neutrophil locomotion. Inhibition of locomotion by hyaluronate was easily reversed by washing the cells free of hyaluronate; thus competition by hyaluronate for cell-surface binding sites is unlikely, and physical effects such as steric exclusion or molecular sieving by the large hyaluronate polymer provide the most probable explanations of its inhibitory effect on cell locomotion. Since hyaluronate is a major constituent of tissue matrices, these results draw attention to the importance of the extracellular environment in regulating inflammatory cell movement in vivo.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3