Brassinosteroid perception in the epidermis controls root meristem size

Author:

Hacham Yael1,Holland Neta1,Butterfield Cristina2,Ubeda-Tomas Susana3,Bennett Malcolm J.3,Chory Joanne24,Savaldi-Goldstein Sigal12

Affiliation:

1. Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel

2. Plant Biology Laboratory, The Salk Institute, La Jolla, CA 92037, USA

3. Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK

4. Howard Hughes Medical Institute, The Salk Institute, La Jolla, CA 92037, USA

Abstract

Multiple small molecule hormones contribute to growth promotion or restriction in plants. Brassinosteroids (BRs), acting specifically in the epidermis, can both drive and restrict shoot growth. However, our knowledge of how BRs affect meristem size is scant. Here, we study the root meristem and show that BRs are required to maintain normal cell cycle activity and cell expansion. These two processes ensure the coherent gradient of cell progression, from the apical to the basal meristem. In addition, BR activity in the meristem is not accompanied by changes in the expression level of the auxin efflux carriers PIN1, PIN3 and PIN7, which are known to control the extent of mitotic activity and differentiation. We further demonstrate that BR signaling in the root epidermis and not in the inner endodermis, quiescent center (QC) cells or stele cell files is sufficient to control root meristem size. Interestingly, expression of the QC and the stele-enriched MADS-BOX gene AGL42 can be modulated by BRI1 activity solely in the epidermis. The signal from the epidermis is probably transmitted by a different component than BES1 and BZR1 transcription factors, as their direct targets, such as DWF4 and BRox2, are regulated in the same cells that express BRI1. Taken together, our study provides novel insights into the role of BRs in controlling meristem size.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3