Compromised junctional integrity phenocopies age-dependent renal dysfunction in Drosophila Snakeskin mutants

Author:

Dornan Anthony J.1,Halberg Kenneth V.2,Beuter Liesa-Kristin13,Davies Shireen-Anne1,Dow Julian A. T.1ORCID

Affiliation:

1. School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow 1 , Glasgow G12 8QQ , UK

2. University of Copenhagen 2 Section for Cell and Neurobiology, Department of Biology , , Universitetsparken 15, Copenhagen DK-2100 , Denmark

3. Justus-Liebig-University Giessen 3 Department of Animal Ecology and Systematics , , Giessen D-35392 , Germany

Abstract

ABSTRACT Transporting epithelia provide a protective barrier against pathogenic insults while allowing the controlled exchange of ions, solutes and water with the external environment. In invertebrates, these functions depend on formation and maintenance of ‘tight’ septate junctions (SJs). However, the mechanism by which SJs affect transport competence and tissue homeostasis, and how these are modulated by ageing, remain incompletely understood. Here, we demonstrate that the Drosophila renal (Malpighian) tubules undergo an age-dependent decline in secretory capacity, which correlates with mislocalisation of SJ proteins and progressive degeneration in cellular morphology and tissue homeostasis. Acute loss of the SJ protein Snakeskin in adult tubules induced progressive changes in cellular and tissue architecture, including altered expression and localisation of junctional proteins with concomitant loss of cell polarity and barrier integrity, demonstrating that compromised junctional integrity is sufficient to replicate these ageing-related phenotypes. Taken together, our work demonstrates a crucial link between epithelial barrier integrity, tubule transport competence, renal homeostasis and organismal viability, as well as providing novel insights into the mechanisms underpinning ageing and renal disease.

Funder

UK Research and Innovation

Biotechnology and Biological Sciences Research Council

Villum Fonden

Danmarks Frie Forskningsfond

University of Glasgow

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms of Systemic Osmoregulation in Insects;Annual Review of Entomology;2024-01-25

2. First person – Anthony Dornan;Journal of Cell Science;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3