Control of a central pattern generator by an identified modulatory interneurone in crustacea. II. Induction and modification of plateau properties in pyloric neurones

Author:

Dickinson P. S.,Nagy F.

Abstract

In the isolated stomatogastric nervous system of the lobster Fasus lalandii, the strong modifications of the pyloric motor pattern induced by firing of the single anterior pyloric modulator neurone (APM) are due primarily to modulation by APM activity of the regenerative membrane properties which are responsible for the ‘burstiness’ of all the pyloric neurones and particularly of the non-pacemaker neurones (constrictor motoneurones). This modulation has been studied under experimental conditions where the main extrinsic influences usually received by the pyloric constrictor neurones (intra-network synaptic interactions, activity of pacemaker neurones, and phasic central inputs from two premotor centres) are minimal. Under these conditions a brief discharge of neurone APM induces long plateaus of firing in all of the pyloric neurones. The non-pacemaker neurones of the pyloric network are not simply passive follower neurones, but can produce regenerative depolarizations (plateau potentials) during which the neurones fire spikes. The ability of the pyloric constrictor neurones to produce plateau potentials (plateau properties) contributes greatly to the generation of the rhythmical pyloric motor pattern. When these neurones spontaneously express their plateau properties, firing of neurone APM amplifies these properties. When most of the central inputs usually received by the pyloric constrictor neurones are experimentally suppressed, these neurones can no longer produce plateau potentials. In such conditions, firing of the single modulatory neurone APM can reinduce plateau properties of the pyloric constrictor neurones. In addition, firing in APM neurone slows down the active repolarization phase which terminates the plateau potentials of pyloric constrictor neurones. This effect is long-lasting and voltage-dependent. Modulation by APM of the plateau properties of the pyloric neurones also changes the sensitivity of these neurones to synaptic inputs. This effect can explain the strong modifications that an APM discharge exerts on a current pyloric motor pattern. Moreover, it might render the motoneurones of the pyloric pattern generator more sensitive to inputs from a command oscillator, and contribute to switching on the pyloric motor pattern.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3