Establishment and long-term maintenance of primary intestinal epithelial cells cultured from the rainbow trout, Oncorhynchus mykiss

Author:

Langan Laura M.1ORCID,Owen Stewart F.2ORCID,Jha Awadhesh N.1ORCID

Affiliation:

1. School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK

2. Global Sustainability, AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TF, UK

Abstract

ABSTRACT A novel method for the establishment and long-term maintenance of ex vivo cultures from intestinal regions of the rainbow trout, Oncorhynchus mykiss (Walbaum), is reported. Adherence of cells was observed within hours, epithelial island formation recorded at 48 h and rapid proliferation with confluence achieved between 9-14 days. In addition to metabolic characterisation, basic morphology of growing cells was characterised using histology, immunofluorescence, transmission electron microscopy (TEM) and transepithelial electrical resistance (TEER). Regional differences in intestinal ethoxyresorufin-O-deethylase (EROD) and 7-ethoxycoumarin-O-deethylation (ECOD) activities in these primary grown enterocytes were compared following exposure to model inducers [i.e. α-NF, β-NF, B(a)P] which demonstrated significant differences. Regional differences in dietary uptake and metabolism of contaminants can therefore be studied in this in vitro system to increase our understanding of fundamental processes, while concurrently providing a means to reduce the number of fish required for biological studies in line with the principles of the 3Rs (Reduce, Refine and Replace). This article has an associated First Person interview with the first author of the paper.

Funder

Biotechnology and Biological Sciences Research Council

Natural Environment Research Council

AstraZeneca

Plymouth University

Seventh Framework Programme

European Federation of Pharmaceutical Industries and Associations

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3