Affiliation:
1. Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, PO Box 14, 9750 AA, Haren, The Netherlands
Abstract
SUMMARY
One route to gain insight into the causes and consequences of ecological differentiation is to understand the underlying physiological mechanisms. We explored the relationships between immunological and oxidative status and investigated how birds cope physiologically with the effects of immune-derived oxidative damage. We successively implemented two experimental manipulations to alter physiological status in a model bird species: the homing pigeon (Columba livia). The first manipulation, an immune supplementation, was achieved by oral administration of lysozyme, a naturally occurring and non-specific antimicrobial enzyme. The second manipulation, an immune challenge, took the form of an injection with lipopolysaccharide, a bacterial endotoxin. Between groups of lysozyme-treated and control birds, we compared lipopolysaccharide-induced changes in reactive oxygen metabolites, total antioxidant capacity, haptoglobin, oxygen consumption, body mass and cloacal temperature. Lysozyme supplementation intensified the lipopolysaccharide-induced inflammatory response and generated short-term oxidative and metabolic costs. We identified significant interactions between immune supplementation and immune challenge in terms of reactive oxygen metabolites, haptoglobin and oxygen consumption. Our study provides alternative interpretations of differences in oxidative and immunological indices and demonstrates that these indices can also fluctuate and interact across very short time scales, reflecting something akin to current ‘health status’ or ‘physiological condition’. These ephemeral effects highlight the need to broadly consider current physiological condition when drawing conclusions that relate physiology to ecology and evolution.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献