Limited functions of Hox genes in the larval development of the ascidian Ciona intestinalis

Author:

Ikuta Tetsuro1,Satoh Nori2,Saiga Hidetoshi1

Affiliation:

1. Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

2. Okinawa Institute of Science and Technology, 12-22 Suzaki, Uruma, Okinawa 904-2234, Japan

Abstract

In animals, region specific morphological characters along the anteroposterior axis are controlled by a number of developmental genes, including Hox genes encoding homeodomain transcription factors. Although Hox genes have been regarded to play a key role in the evolution of morphological diversity, as well as in the establishment of the body plan, little is known about the function of Hox genes in invertebrates, except for in insects and nematodes. The present study addresses the role of Hox genes in body patterning during the larval development of the ascidian Ciona intestinalis conducting knockdown experiments of the seven Hox genes expressed during embryogenesis. Experimental results have demonstrated that Ci-Hox12 plays an important role in tail development through the maintenance of expression of Ci-Fgf8/17/18 and Ci-Wnt5 in the tail tip epidermis. Additionally, it has been shown that Ci-Hox10 is involved in the development of GABAergic neurons in the dorsal visceral ganglion. Surprisingly, knockdown of Ci-Hox1, Ci-Hox2, Ci-Hox3, Ci-Hox4 and Ci-Hox5 did not give rise to any consistent morphological defects in the larvae. Furthermore, expression of neuronal marker genes was not affected in larvae injected with MOs against Ci-Hox1, Ci-Hox3 or Ci-Hox5. In conclusion, we suggest that the contribution of Hox genes to the larval development of the ascidian C. intestinalis might be limited, despite the fact that Ci-Hox10 and Ci-Hox12 play important roles in neuronal and tail development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3