A design logic for sequential segmentation across organisms

Author:

Simsek M. Fethullah1ORCID,Özbudak Ertuğrul M.12ORCID

Affiliation:

1. Division of Developmental Biology Cincinnati Children's Hospital Medical Center OH USA

2. Department of Pediatrics University of Cincinnati College of Medicine OH USA

Abstract

Multitudes of organisms display metameric compartmentalization of their body plan. Segmentation of these compartments happens sequentially in diverse phyla. In several sequentially segmenting species, periodically active molecular clocks and signaling gradients have been found. The clocks are proposed to control the timing of segmentation, while the gradients are proposed to instruct the positions of segment boundaries. However, the identity of the clock and gradient molecules differs across species. Furthermore, sequential segmentation of a basal chordate, Amphioxus, continues at late stages when the small tail bud cell population cannot establish long‐range signaling gradients. Thus, it remains to be explained how a conserved morphological trait (i.e., sequential segmentation) is achieved by using different molecules or molecules with different spatial profiles. Here, we first focus on sequential segmentation of somites in vertebrate embryos and then draw parallels with other species. Thereafter, we propose a candidate design principle that has the potential to answer this puzzling question.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

Wiley

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3