The maternal genespn-4encodes a predicted RRM protein required for mitotic spindle orientation and cell fate patterning in earlyC. elegansembryos

Author:

Gomes José-Eduardo1,Encalada Sandra E.1,Swan Kathryn A.2,Shelton Christopher A.3,Carter J. Clayton1,Bowerman Bruce3

Affiliation:

1. Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA

2. Present address: Genomics, Exelixis Inc., San Francisco, CA, 94083, USA

3. Present address: Dept. of Comparative Genetics, GlaxoSmithKline, King of Prussia, PA 19406, USA

Abstract

C. elegans embryogenesis begins with a stereotyped sequence of asymmetric cell divisions that are largely responsible for establishing the nematode body plan. These early asymmetries are specified after fertilization by the widely conserved, cortically enriched PAR and PKC-3 proteins, which include three kinases and two PDZ domain proteins. During asymmetric cell divisions in the early embryo, centrosome pairs initially are positioned on transverse axes but then rotate to align with the anteroposterior embryonic axis. We show that rotation of the centrosomal/nuclear complex in an embryonic cell called P1 requires a maternally expressed gene we name spn-4. The predicted SPN-4 protein contains a single RNA recognition motif (RRM), and belongs to a small subfamily of RRM proteins that includes one Drosophila and two human family members. Remarkably, in mutant embryos lacking spn-4 function the transversely oriented ‘P1’ mitotic spindle appears to re-specify the axis of cell polarity, and the division remains asymmetric. spn-4 also is required for other developmental processes, including the specification of mesendoderm, the restriction of mesectoderm fate to P1 descendants, and germline quiescence during embryogenesis. We suggest that SPN-4 post-transcriptionally regulates the expression of multiple developmental regulators. Such SPN-4 targets might then act more specifically to generate a subset of the anterior-posterior asymmetries initially specified after fertilization by the more generally required PAR and PKC-3 proteins.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3