Identification of the RRM1 gene family in rice (Oryza sativa) and its response to rice blast

Author:

Jiang Xinlei1,Yu Shangwei1,Huang Yuhan1,Huang Junying1,Liu Shaochun1,Yang Dewei2,Fu Junru1,He Haohua1,Fu Haihui1

Affiliation:

1. Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiang Xi, China

2. Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou, Fu Jian, China

Abstract

To better understand RNA-binding proteins in rice, a comprehensive investigation was conducted on the RRM1 gene family of rice. It encompassed genome-wide identification and exploration of its role in rice blast resistance. The physicochemical properties of the rice OsRRM1 gene family were analyzed. There genes were also analyzed for their conserved domains, motifs, location information, gene structure, phylogenetic trees, collinearity, and cis-acting elements. Furthermore, alterations in the expression patterns of selected OsRRM1 genes were assessed using quantitative real-time PCR (qRT-PCR). A total of 212 members of the OsRRM1 gene family were identified, which were dispersed across 12 chromosomes. These genes all exhibit multiple exons and introns, all of which encompass the conserved RRM1 domain and share analogous motifs. This observation suggests a high degree of conservation within the encoded sequence domain of these genes. Phylogenetic analysis revealed the existence of five subfamilies within the OsRRM1 gene family. Furthermore, investigation of the promoter region identified cis-regulatory elements that are involved in nucleic acid binding and interaction with multiple transcription factors. By employing GO and KEGG analyses, four RRM1 genes were tentatively identified as crucial contributors to plant immunity, while the RRM1 gene family was also found to have a significant involvement in the complex of alternative splicing. The qRT-PCR results revealed distinct temporal changes in the expression patterns of OsRRM1 genes following rice blast infection. Additionally, gene expression analysis indicates that the majority of OsRRM1 genes exhibited constitutive expressions. These findings enrich our understanding of the OsRRM1 gene family. They also provide a foundation for further research on immune mechanisms rice and the management of rice blast.

Funder

Double Thousand Plan of Jiangxi Province

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3