Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis

Author:

Michaelis U. Ruth1,Fisslthaler Beate1,Barbosa-Sicard Eduardo1,Falck John R.2,Fleming Ingrid1,Busse Rudi1

Affiliation:

1. Institut für Kardiovaskuläre Physiologie, Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany

2. Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9038, USA

Abstract

Recent studies suggest that cytochrome P450 (CYP) epoxygenase-derived epoxyeicosatrienoic acids (EETs) elicit cell proliferation and promote angiogenesis. The aim of this study was to determine the role of CYP 2C8/9-derived EETs in the process of angiogenesis under hypoxic conditions. In human endothelial cells, hypoxia enhanced the activity of the CYP 2C9 promoter, increased the expression of CYP 2C mRNA and protein and augmented 11,12-EET production. In Transwell assays, the migration of endothelial cells pre-exposed to hypoxia to increase CYP expression was abolished by CYP 2C antisense oligonucleotides as well as by the CYP inhibitor MS-PPOH and the EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE). Similar findings were obtained in porcine coronary artery endothelial cells. CYP 2C9 overexpression in endothelial cells increased the association of PAK-1 with Rac, a response also elicited by the CYP 2C9 product 11,12-EET. Matrix metalloprotease (MMP) activity was increased in CYP-2C9-overexpressing cells and correlated with increased invasion through Matrigel-coated Transwell chambers: an effect sensitive to the CYP 2C9 inhibitor sulfaphenazole as well as to EEZE and the MMP inhibitor GM6001. In in vitro angiogenesis models, the EET antagonist inhibited tube formation induced by CYP 2C9 overexpression as well as that in endothelial cells exposed to hypoxia to increase CYP 2C expression. Furthermore, in the chick chorioallantoic membrane assay, EEZE abolished hypoxia-induced angiogenesis. Taken together, these data indicate that CYP 2C-derived EETs significantly affect the sequence of angiogenic events under hypoxic conditions.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3