The cost of running uphill: linking organismal and muscle energy use in guinea fowl (Numida meleagris)

Author:

Rubenson Jonas1,Henry Havalee T.1,Dimoulas Peter M.1,Marsh Richard L.1

Affiliation:

1. Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA

Abstract

SUMMARYUphill running requires more energy than level running at the same speed,largely due to the additional mechanical work of elevating the body weight. We explored the distribution of energy use among the leg muscles of guinea fowl running on the level and uphill using both organismal energy expenditure(oxygen consumption) and muscle blood flow measurements. We tested each bird under four conditions: (1) rest, (2) a moderate-speed level run at 1.5 m s–1, (3) an incline run at 1.5 m s–1 with a 15% gradient and (4) a fast level run at a speed eliciting the same metabolic rate as did running at a 15% gradient at 1.5 m s–1(2.28–2.39 m s–1). The organismal energy expenditure increased by 30% between the moderate-speed level run and both the fast level run and the incline run, and was matched by a proportional increase in total blood flow to the leg muscles. We found that blood flow increased significantly to nearly all the leg muscles between the moderate-speed level run and the incline run. However, the increase in flow was distributed unevenly across the leg muscles, with just three muscles being responsible for over 50% of the total increase in blood flow during uphill running. Three muscles showed significant increases in blood flow with increased incline but not with an increase in speed. Increasing the volume of active muscle may explain why in a previous study a higher maximal rate of oxygen consumption was measured during uphill running. The majority of the increase in energy expenditure between level and incline running was used in stance-phase muscles. Proximal stance-phase extensor muscles with parallel fibers and short tendons, which have been considered particularly well suited for doing positive work on the center of mass, increased their mass-specific energy use during uphill running significantly more than pinnate stance-phase muscles. This finding provides some evidence for a division of labor among muscles used for mechanical work production based on their muscle–tendon architecture. Nevertheless, 33% of the total increase in energy use (40% of the increase in stance-phase energy use) during uphill running was provided by pinnate stance-phase muscles. Swing-phase muscles also increase their energy expenditure during uphill running, although to a lesser extent than that required by running faster on the level. These results suggest that neither muscle–tendon nor musculoskeletal architecture appear to greatly restrict the ability of muscles to do work during locomotor tasks such as uphill running, and that the added energy cost of running uphill is not solely due to lifting the body center of mass.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference44 articles.

1. Biewener, A. A. (1998). Muscle function in vivo: a comparison of muscles used for elastic energy savings versus muscles used to generate mechanical power. Am. Zool.38,703-717.

2. Biewener, A. A. and Gillis, G. B. (1999). Dynamics of muscle function during locomotion: accommodating variable conditions. J. Exp. Biol.202,3387-3396.

3. Biewener, A. A. and Roberts, T. J. (2000). Muscle and tendon contributions to force, work and elastic energy savings: a comparative perspective. Exerc. Sport Sci. Rev.28, 99-107.

4. Biewener, A. A., Dial, K. P. and Goslow, G. E.(1992). Pectoralis muscle force and power output during flight in the starling. J. Exp. Biol.164, 1-18.

5. Biewener, A. A., Konieczynski, D. D. and Baudinette, R. V.(1998). In vivo muscle force–length behavior during steady-speed hopping in tammar wallabies. J. Exp. Biol.201,1681-1694.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3