Metabolism of the sub-Antarctic caterpillar Pringleophaga marioni during cooling, freezing and thawing

Author:

Sinclair Brent J.1,Klok C. Jaco1,Chown Steven L.1

Affiliation:

1. Spatial, Physiological and Conservation Ecology Group, Department of Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa

Abstract

SUMMARY Although general models of the processes involved in insect survival of freezing exist, there have been few studies directly investigating physiological processes during cooling, freezing and thawing, without which these models remain hypothetical. Here, we use open-flow respirometry to investigate the metabolism of the freeze-tolerant sub-Antarctic caterpillar Pringleophaga marioni Viette (Lepidoptera: Tineidae) during cooling,freezing and thawing and to compare animals exposed to non-lethal(–5.8°C) and lethal (–6.0°C, after which caterpillars are moribund for several days, and –18°C, after which caterpillars are completely unresponsive) freezing stress. We found a large decrease in metabolic rate (that is not associated with freezing) at–0.6±0.1°C and calculated a Q10 of 2.14×103 at this breakpoint. This breakpoint is coincident with the critical thermal minimum (CTmin) and is hypothesised to be a metabolic manifestation of the latter, possibly a failure of the Na+/K+-ATPase pump. This provides a plausible link between processes at the cellular level and observations of the action of the CTmin at tissue and whole-organism levels. Caterpillars froze at –4.6±0.1°C and had detectable metabolism when frozen. Post-thaw, metabolic rates were lower than pre-freezing measurements. Post-thaw metabolic rates did not differ between temperatures that did and did not kill the caterpillars, which suggests that mortality may be a result of a breakdown in processes at the organismal,rather than cellular, level of organisation.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3