Effect of different lethal temperature assay methods on thermal tolerance plasticity of three different breeds of mulberry silkworm (Bombyx mori L.)

Author:

Chatterjee ManojitORCID,Ray Nilay

Abstract

Abstract Background Mulberry silkworm (Bombyx mori L.) is one of the best-studied insect models, regularly used as a type specimen for thermal tolerance experiments on insects. Still, the upper lethal limit of this lepidopteran has never been explored extensively using any sort of conventional lethal assay method. The present study deals with the employment of different lethal assay protocols for the study of survivorship of three different breeds of mulberry silkworm (B. mori) exposed to different temperatures (30–50 °C) and durations of stress (1–3 h) on different days (day 2, 4, and 6) of the fifth instar stage for formulating an extensive upper lethal temperature (ULT50 and ULT25) index. Results Among treatment temperatures 30 °C, 35 °C, and 40 °C had a significant (p =  < 0.0001) impact on the high-temperature survival rate of the silkworm. Among duration—1 h and 2 h influenced the survival rate significantly (p =  < 0.0001). Plunging, one-way ramping, and two-way ramping assay methods seemed to exert a non-significant (Wald χ2 = 3.253, p = 0.197) influence on silkworm survival. F1 hybrid was found to exhibit the highest survivorship across different temperatures, followed by the multivoltine Nistari plain and then by the bivoltine breeds. In F1 hybrid silkworms, the upper lethal temperatures ULT50, varied within the range of 37 °C to 44 °C and ULT25 varied within the range of 40–47 °C. The mean upper lethal limit—ULT0 for all three breeds of mulberry silkworm, across all experimental groups, was computed to be ~ 49 °C. Conclusions Ultimately the overall thermal tolerance of mulberry silkworm exhibited a significant inter-breed variation based on the heterogeneous thermal plasticity of the three different breeds. The outcome of the present study in the form of upper lethal temperature ranges of the breeds under consideration can form the basis of future thermal stress experiments in mulberry silkworms.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3