Effect of β-adrenergic stimulation on the relationship between membrane potential, intracellular [Ca2+] and sarcoplasmic reticulum Ca2+ uptake in rainbow trout atrial myocytes

Author:

Llach Anna1,Huang Jingbo2,Sederat Franklin2,Tort Lluis1,Tibbits Glen2,Hove-Madsen Leif1

Affiliation:

1. Unitat de Fisiologia Animal, Departamento de Biologia Celular, Fisiologia i Immunología, Facultat de Ciencies, Universitat Autònoma de Barcelona, 08193, Cerdanyola, Barcelona, España

2. Cardiac Membrane Research Laboratory, Department of Kinesiology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6

Abstract

SUMMARY Long depolarizations cause a steady tonic contraction and induce sarcoplasmic reticulum (SR) Ca2+-uptake in trout atrial myocytes. Simultaneous measurements of cytosolic [Ca2+]([Ca2+]i) and whole membrane current showed an elevated[Ca2+]i throughout the depolarization. Rapid caffeine(Caf) applications at –80 mV before and after a long depolarization were used to determine SR Ca2+ loading and its dependency on membrane potential and [Ca2+]i during depolarization. Following a 10 s depolarization, the maximal SR Ca2+ load was 597 μmol l–1 and loading was half-maximal at –12 mV. Theβ-adrenergic agonist isoproterenol (ISO) did not affect the maximal SR Ca2+ loading but shifted the potential for half-maximal loading by–26 mV. Following a 3 s depolarization, the maximal SR Ca2+uptake rate (V̇max) was 418μmol l–1 s–1 in control conditions. ISO did not affect V̇max, but significantly lowered the average free Ca2+ transient during the depolarization and shifted the K0.5 for the relationship between SR Ca2+ uptake and [Ca2+]i from 1.27 in control to 0.8 μmol l–1 with ISO. Following repetitive 200 ms depolarizations, ISO increased the l-type Ca2+current (ICa) amplitude by 91±29% and the peak Ca2+ transient by 41±10%, and decreased the half life of the Ca2+ transient from 151±12 to 111±6 ms. Using the relationship between [Ca2+]i and SR Ca2+uptake to calculate the total SR Ca2+ uptake during a Ca2+ transient elicited by a 200 ms depolarization, a significant increase in the SR Ca2+ uptake from 37±6 μmol l–1 in control to 68±4 μmol l–1with ISO was seen. When normalized to the total Ca2+ transport the contribution of the SR was not significantly different in the absence(35±6%) or presence of ISO (41±4%). Exposure of cells to ISO and low extracellular [Ca2+] increased ICa by 67±40%(N=5) but significantly reduced SR Ca2+ uptake at membrane potentials above –30 mV. Together, these results suggest that (i) ISO has a stimulatory effect on the SR Ca2+ pump that may contribute to the faster decay of the Ca2+ transient, and (ii) the relative contribution of the SR to the Ca2+ removal during relaxation is not altered by ISO in trout atrial myocytes.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3