CaMKII is responsible for activity-dependent acceleration of relaxation in rat ventricular myocytes

Author:

Bassani R. A.1,Mattiazzi A.1,Bers D. M.1

Affiliation:

1. Department of Physiology, Loyola University School of Medicine, Maywood, Illinois 60153.

Abstract

We investigated the role of Ca/calmodulin-dependent protein kinase (CaMKII) in relaxation and cytosolic free [Ca] ([Ca]i) decline during steady-state (SS) and postrest (PR) twitches in intact rat ventricular myocytes. Half-time of mechanical relaxation and time constant of [Ca]i decline (tau) were twofold greater during PR than with SS at 1 Hz. This difference was 1) abolished by inhibition of sarcoplasmic reticulum (SR) Ca accumulation by thapsigargin or caffeine; 2) greater at higher stimulation frequency and extracellular [Ca], which affected only SS tau; 3) abolished by the protein phosphatase inhibitor okadaic acid (10 microM, which selectively accelerated [Ca]i decline during PR); 4) still present during stimulation or inhibition of adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA) by 10 microM forskolin or 1 microM H-89, respectively (SS and PR tau values were abbreviated and prolonged, respectively); and 5) suppressed by 10 microM KN-62, a selective inhibitor of CaMKII, which selectively prolonged [Ca]i decline during SS twitches. Both protein kinase inhibitors were also shown to decrease the SR Ca-uptake rate in digitonin-permeabilized rat myocytes. We conclude that CaMKII plays a major role in modulation of relaxation in rat ventricular myocytes, enhancing SR Ca uptake in a activity-dependent fashion. Our results are also compatible with a background, activity-independent stimulation of SR Ca uptake by PKA in intact rat myocytes.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3