A role for nitric oxide in hypoxia-induced activation of cardiac KATP channels in goldfish (Carassius auratus)

Author:

Cameron John S.1,Hoffmann Kristin E.1,Zia Cindy1,Hemmett Heidi M.1,Kronsteiner Allyson1,Lee Connie M.1

Affiliation:

1. Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA

Abstract

SUMMARY Hypoxia-induced shortening of cardiac action potential duration (APD) has been attributed in mammalian hearts to the activation of ATP-sensitive potassium (KATP) channels. Since KATP channels are also present at high densities in the hearts of vertebrate ectotherms, speculation arises as to their function during periods of reduced environmental oxygen. The purpose of the present study was to determine whether nitric oxide (NO)plays a role in cardiac sarcolemmal KATP channel activation during hypoxia in a species with a high degree of tolerance to low oxygen environments: the goldfish (Carassius auratus). Conventional intracellular and patch-clamp recording techniques were used to record responses from excised ventricles or isolated ventricular myocytes and inside-out patches, respectively, from fish acclimated at 21°C. During moderate, substrate-free hypoxia (6.1±0.2 kPa), ventricular APD was significantly shortened at 50% and 90% of full repolarization, a response that was reversible upon reoxygenation and blocked by the KATP channel antagonist BDM. Under normoxic conditions, APD was also reduced in the presence of the NO-donor SNAP (100 μmol l-1). In cell-attached membrane patches, sarcolemmal KATP channel activity was enhanced after 10 min hypoxia, an effect that was reduced or eliminated by simultaneous exposure to BDM, to the guanylate cyclase inhibitor ODQ or to the NO synthase inhibitor l-NAME. In cell-free patches, KATP channel activity was abolished by 2 mmol l-1 ATP but increased by SNAP; the cGMP analog 8-Br-cGMP (200 μmol l-1) also enhanced activity, an effect that was eliminated by BDM. Our data indicate that NO synthesized in cardiac myocytes could enhance sarcolemmal KATP channel activation during moderate hypoxia in goldfish. This response may serve a cardioprotective role by helping to conserve ATP or by reducing intracellular Ca2+ accumulation.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3