Inositol (1,4,5)-trisphosphate receptor links to filamentous actin are important for generating local Ca2+ signals in pancreatic acinar cells

Author:

Turvey Matthew R.1,Fogarty Kevin E.2,Thorn Peter1

Affiliation:

1. Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 IPD, UK

2. Biomedical Imaging Group, Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01650, USA

Abstract

We explored a potential structural and functional link between filamentous actin (F-actin) and inositol (1,4,5)-trisphosphate receptors (IP3Rs) in mouse pancreatic acinar cells. Using immunocytochemistry, F-actin and type 2 and 3 IP3Rs (IP3R2 and IP3R3) were identified in a cellular compartment immediately beneath the apical plasma membrane. In an effort to demonstrate that IP3R distribution is dependent on an intact F-actin network in the apical subplasmalemmal region, cells were treated with the actin-depolymerising agent latrunculin B. Immunocytochemistry indicated that latrunculin B treatment reduced F-actin in the basolateral subplasmalemmal compartment, and reduced and fractured F-actin in the apical subplasmalemmal compartment. This latrunculin-B-induced loss of F-actin in the apical region coincided with a reduction in IP3R2 and IP3R3, with the remaining IP3Rs localized with the remaining F-actin. Experiments using western blot analysis showed that IP3R3s are resistant to extraction by detergents, which indicates a potential interaction with the cytoskeleton. Latrunculin B treatment in whole-cell patch-clamped cells inhibited Ca2+-dependent Cl– current spikes evoked by inositol (2,4,5)-trisphosphate; this is due to an inhibition of the underlying local Ca2+ signal. Based on these findings, we suggest that IP3Rs form links with F-actin in the apical domain and that these links are essential for the generation of local Ca2+ spikes.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3