Calcium waves facilitate and coordinate the contraction of endfeet actin stress fibers in Drosophila interommatidial cells

Author:

Ready Donald F.1,Chang Henry C.1ORCID

Affiliation:

1. Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA

Abstract

ABSTRACT Actomyosin contraction shapes the Drosophila eye's panoramic view. The convex curvature of the retinal epithelium, organized in ∼800 close-packed ommatidia, depends upon a fourfold condensation of the retinal floor mediated by contraction of actin stress fibers in the endfeet of interommatidial cells (IOCs). How these tensile forces are coordinated is not known. Here, we discover a previously unobserved phenomenon: Ca2+ waves regularly propagate across the IOC network in pupal and adult eyes. Genetic evidence demonstrates that IOC waves are independent of phototransduction, but require the inositol 1,4,5-triphosphate receptor (IP3R), suggesting that these waves are mediated by Ca2+ releases from endoplasmic reticulum stores. Removal of IP3R disrupts stress fibers in IOC endfeet and increases the basal retinal surface by ∼40%, linking IOC waves to facilitation of stress fiber contraction and floor morphogenesis. Furthermore, IP3R loss disrupts the organization of a collagen IV network underneath the IOC endfeet, implicating the extracellular matrix and its interaction with stress fibers in eye morphogenesis. We propose that coordinated cytosolic Ca2+ increases in IOC waves promote stress fiber contractions, ensuring an organized application of the planar tensile forces that condense the retinal floor. This article has an associated ‘The people behind the papers’ interview.

Funder

National Institutes of Health

Purdue University

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3