Activation of a sensorimotor pathway in response to a water temperature drop in a teleost fish

Author:

van den Burg E. H.1,Verhoye M.2,Peeters R. R.2,Meek J.1,Flik G.1,Van der Linden A.2

Affiliation:

1. Department of Organismal Animal Physiology, Faculty of Science, Radboud University Nijmegen, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands

2. Bio-Imaging Lab, Campus Groenenborger, University of Antwerp, Antwerp,Belgium

Abstract

SUMMARY When common carp, Cyprinus carpio L., experience a rapid temperature drop, the cerebral blood volume is strongly reduced to dampen the temperature drop in the brain. Simultaneously, the preoptic area and pituitary gland are activated to launch whole-body adaptive responses. However, the preferred reaction of fish to a temperature change is an escape reaction,which implies activation of a sensorimotor pathway. Here, we used blood oxygenation level-dependent (BOLD)- and cerebral blood volume (CBV)-weighted functional magnetic resonance imaging (fMRI) to identify a sensorimotor pathway, during a 10°C temperature drop in common carp. Transient activation was observed in the region where the sensory root of the trigeminal nerve enters the brain, and in the valvula cerebelli. In both regions,metabolic activity increased (increased deoxyhemoglobin content demonstrated by a decreased BOLD signal) within 30 s after the onset of the temperature drop, peaked after 2-3 min, and then decreased, even though the temperature continued to drop for another 2 min. These brain structures appear to respond to temperature change, rather than to the absolute temperature. Thus, during a temperature drop, the sensorimotor pathway consisting of the trigeminal nerve,the primary sensory trigeminal nucleus, the valvula cerebelli and some motornuclei, is active, in line with perception of temperature change in the buccal cavity, leading to motor activity for escape. This pathway operates in parallel to an acclimation pathway, which involves the preoptic area to pituitary gland pathway.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3