Affiliation:
1. The University of British Columbia 1 Department of Zoology , , Vancouver, BC , Canada V6T 1Z4
2. Marine Science Institute, The University of Texas at Austin 2 , Port Aransas, TX 78373 , USA
Abstract
ABSTRACT
With the growing prevalence of hypoxia (O2 levels ≤2 mg l−1) in aquatic and marine ecosystems, there is increasing interest in the adaptive mechanisms fish may employ to better their performance in stressful environments. Here, we investigated the contribution of a proposed strategy for enhancing tissue O2 extraction – plasma-accessible carbonic anhydrase (CA-IV) – under hypoxia in a species of estuarine fish (red drum, Sciaenops ocellatus) that thrives in fluctuating habitats. We predicted that hypoxia-acclimated fish would increase the prevalence of CA-IV in aerobically demanding tissues to confer more efficient tissue O2 extraction. Furthermore, we predicted the phenotypic changes to tissue O2 extraction that occur with hypoxia acclimation may improve respiratory and swim performance under 100% O2 conditions (i.e. normoxia) when compared with performance in fish that have not been acclimated to hypoxia. Interestingly, there were no significant differences in relative CA-IV mRNA expression, protein abundance or enzyme activity between the two treatments, suggesting CA-IV function is maintained under hypoxia. Likewise, respiratory performance of hypoxia-acclimated fish was similar to that of control fish when tested in normoxia. Critical swim speed (Ucrit) was significantly higher in hypoxia-acclimated fish but translated to marginal ecological benefits with an increase of ∼0.3 body lengths per second. Instead, hypoxia-acclimated fish may have relied more heavily on anaerobic metabolism during their swim trials, utilizing burst swimming 1.5 times longer than control fish. While the maintenance of CA-IV may still be an important contributor for hypoxia tolerance, our evidence suggests hypoxia-acclimated red drum are using other mechanisms to cope in an O2-depleted environment.
Funder
National Science Foundation
University of Texas at Austin
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献