Bone without minerals and its secondary mineralization in Atlantic salmon (Salmo salar): the recovery from phosphorus deficiency

Author:

Witten P. Eckhard1ORCID,Fjelldal Per Gunnar2,Huysseune Ann1,McGurk Charles3,Obach Alex3,Owen Matthew A. G.3

Affiliation:

1. Ghent University, Biology Department, Ledeganckstraat 35, 9000 Ghent, Belgium

2. Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway

3. Skretting Aquaculture Research Center, P. O. Box 48, N-4001, Stavanger, Norway

Abstract

Calcium and phosphorus (P) are the main bone minerals and P-deficiency causes hypomineralized bones (osteomalacia) and malformations. This study uses a P-deficient salmon model to falsify three hypotheses. First, an extended period of dietary P-deficiency does not cause pathologies other than osteomalacia. Second, secondary mineralization of non-mineralized bone is possible. Third, secondary mineralization can restore the bones' mineral composition and mechanical properties. Post-smolt Atlantic salmon (Salmo salar) received for seven weeks diets with regular P-content (RP), or with a 50% lowered P-content (LP). For additional nine weeks RP animals continued on the regular diet (RP-RP). LP animals continued on the LP-diet (LP-LP), on a regular P diet (LP-RP), or on a high P diet (LP-HP). After 16 weeks, animals in all groups maintained a non-deformed vertebral column. LP-LP animals continued bone formation albeit without mineralization. Nine weeks of RP diet largely restored the mineral content and mechanical properties of vertebral bodies. Mineralization resumed deep inside the bone and away from osteoblasts. The history of P-deficiency was traceable in LP-RP and LP-HP animals as a ring of low-mineralized bone in the vertebral body endplates but no tissue alterations occurred that foreshadow vertebral body compression or fusion. Large quantities of non-mineralized salmon bone have the capacity to re-mineralize. If 16 weeks of P-deficiency as a single factor is not causal for typical vertebral body malformations other factors remain to be identified. This example of functional bone without minerals may explain why some teleost species can afford to have an extremely low mineralized skeleton.

Funder

Skretting Aquaculture Research Centre

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference82 articles.

1. Phosphorous (P) deficiency due to low P availability in fishmeal produced from blue whiting (Micromesistius poutassou) in feed for under-yearling Atlantic salmon (Salmo salar) smolt;Albrektsen;Aquaculture,2009

2. Biochemical recovery time scales in elderly patients with osteomalacia;Allen;J. Roy. Soc. Med.,2004

3. Amoroso, G. (2016). Investigations of skeletal anomalies in triploid Atlantic salmon (Salmo salar L. 1758) in freshwater with particular focus on lower jaw deformity (LJD). PhD thesis, Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, Tasmania.

4. Vitamin D deficiency in childhood: old lessons and current challenges;Antonucci;J. Pediatr. Endocr. Met.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3