The problems with pin bones: Intermuscular bone development and function in salmonids and their implications for aquaculture

Author:

Lyall Brianne A.123ORCID,Witten P. Eckhard4ORCID,Carter Chris G.12,Perrott Matthew R.5,Symonds Jane E.3,Walker Seumas P.3,Waddington Zac6,Amoroso Gianluca12ORCID

Affiliation:

1. Institute for Marine and Antarctic Studies University of Tasmania Hobart Tasmania Australia

2. Blue Economy Cooperative Research Centre Launceston Tasmania Australia

3. Cawthron Institute Nelson New Zealand

4. Ghent University Ghent Belgium

5. Massey University Palmerston North New Zealand

6. The New Zealand King Salmon Company Limited Nelson New Zealand

Abstract

AbstractA healthy skeletal system is fundamental to fish welfare and performance and a key physiological feature of a robust fish. The presence of skeletal deformities in farmed salmonids is a persistent welfare problem in aquaculture, and one which threatens to impede industry growth. Deformities of the fine bones of fish, such as ribs and intermuscular bones (IBs), have received less attention than vertebral body deformities, despite their potential to compromise fish welfare and product quality. IBs, commercially known as pin bones, are small spicule‐like bones embedded in the muscle fillets of salmonids, cyprinids and other basal teleost species. In farmed basal teleosts, they impact fish processing, have negative effects on the economic value of fish and present a potential consumer health concern if ingested. Current understanding of IB development and function in teleosts has mostly relied on morphological research. More recently, advances in our understanding of molecular mechanisms of IB development in cyprinids have been made, largely due to the exploration of breeding IB‐free fish for use in aquaculture. In this review, we explore the existing literature on IBs in teleosts, highlight the points of contention within this field of research and identify the significant knowledge gaps about the development and function of salmonid IBs. To our knowledge, there is no available research on the function of IBs and scarce research concerning IB development in salmonids. Future research on teleost IBs would benefit from the use of consistent terminology to facilitate interdisciplinary collaboration and identify research outputs in this field.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3