Central pattern generator for swimming in Melibe

Author:

Thompson Stuart1,Watson Winsor H.2

Affiliation:

1. Department of Biological Sciences, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA

2. Zoology Department, Center for Marine Biology, University of New Hampshire, Durham, NH 03824, USA

Abstract

SUMMARY The nudibranch mollusc Melibe leonina swims by bending from side to side. We have identified a network of neurons that appears to constitute the central pattern generator (CPG) for this locomotor behavior, one of only a few such networks to be described in cellular detail. The network consists of two pairs of interneurons, termed `swim interneuron 1' (sint1) and`swim interneuron 2' (sint2), arranged around a plane of bilateral symmetry. Interneurons on one side of the brain, which includes the paired cerebral, pleural and pedal ganglia, coordinate bending movements toward the same side and communicate via non-rectifying electrical synapses. Interneurons on opposite sides of the brain coordinate antagonistic movements and communicate over mutually inhibitory synaptic pathways. Several criteria were used to identify members of the swim CPG, the most important being the ability to shift the phase of swimming behavior in a quantitative fashion by briefly altering the firing pattern of an individual neuron. Strong depolarization of any of the interneurons produces an ipsilateral swimming movement during which the several components of the motor act occur in sequence. Strong hyperpolarization causes swimming to stop and leaves the animal contracted to the opposite side for the duration of the hyperpolarization. The four swim interneurons make appropriate synaptic connections with motoneurons, exciting synergists and inhibiting antagonists. Finally, these are the only neurons that were found to have this set of properties in spite of concerted efforts to sample widely in the Melibe CNS. This led us to conclude that these four cells constitute the CPG for swimming. While sint1 and sint2 work together during swimming, they play different roles in the generation of other behaviors. Sint1 is normally silent when the animal is crawling on a surface but it depolarizes and begins to fire in strong bursts once the foot is dislodged and the animal begins to swim. Sint2 also fires in bursts during swimming, but it is not silent in non-swimming animals. Instead activity in sint2 is correlated with turning movements as the animal crawls on a surface. This suggests that the Melibe motor system is organized in a hierarchy and that the alternating movements characteristic of swimming emerge when activity in sint1 and sint2 is bound together.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference30 articles.

1. Arshavsky, Yu. I., Beloozerova, I. N., Orlovsky, G. N., Panchin,Yu. V. and Pavlova, G. A. (1985). Control of locomotion in marine mollusc Clione limacina. II. Rhythmic neurons of pedal ganglia. Exp. Brain Res.58,263-272.

2. Cohen, L. B., Watson, W., Trimarchi, J., Falk, C. X. and Wuy, J. Y. (1991). Optical measurement of activity in the Melibe leonina buccal ganglion. Soc. Neurosci. Abstr.17, 1593.

3. Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals. Science210,492-498.

4. Dorsett, D. A., Willows, A. O. D. and Hoyle, G.(1969). Centrally generated nerve impulse sequences during swimming behavior in Tritonia. Nature244,711-712.

5. Friesen, W. O. (1994). Reciprocal inhibition: A mechanism underlying oscillatory animal movements. Neurosci. Biobehav. Rev.18,547-553.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3