The mechanics of azimuth control in jumping by froghopper insects

Author:

Sutton G. P.1,Burrows M.1

Affiliation:

1. Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK

Abstract

SUMMARYMany animals move so fast that there is no time for sensory feedback to correct possible errors. The biomechanics of the limbs participating in such movements appear to be configured to simplify neural control. To test this general principle, we analysed how froghopper insects control the azimuth direction of their rapid jumps, using high speed video of the natural movements and modelling to understand the mechanics of the hind legs. We show that froghoppers control azimuth by altering the initial orientation of the hind tibiae; their mean angle relative to the midline closely predicts the take-off azimuth. This applies to jumps powered by both hind legs, or by one hind leg. Modelling suggests that moving the two hind legs at different times relative to each other could also control azimuth, but measurements of natural jumping showed that the movements of the hind legs were synchronised to within 32 μs of each other. The maximum timing difference observed (67 μs) would only allow control of azimuth over 0.4 deg. to either side of the midline. Increasing the timing differences between the hind legs is also energetically inefficient because it decreases the energy available and causes losses of energy to body spin; froghoppers with just one hind leg spin six times faster than intact ones. Take-off velocities also fall. The mechanism of azimuth control results from the mechanics of the hind legs and the resulting force vectors of their tibiae. This enables froghoppers to have a simple transform between initial body position and motion trajectory, therefore potentially simplifying neural control.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3