Affiliation:
1. Fakultät für Biologie, Universität Konstanz, D-7750 Konstanz, Federal Republic of Germany
Abstract
The intracellular K activity of leech Retzius cells was measured using double-barrelled, liquid ion exchanger, microelectrodes. At the normal external K+ concentration of 4 mm (equivalent to 3 mm-K activity, assuming an activity coefficient of 0.75) the mean K activity was 101.3 ± 7.6 mm (S.D., n = 14) in the cell bodies, and 4.35 ± 0.4 mV (n = 27) in the extracellular spaces surrounding them, indicating a K+ equilibrium potential of - 80 mV. The mean membrane potential was - 43.6 + 4.9 mV (n = 14). In a K-free external solution, or in the presence of 5 × 10−4m-ouabain, the intracellular K activity decreased by up to 14 mm min−1. This indicates an efflux of K+ ions across the cell membrane of approximately 2 × 10−10 mol cm−2s, and an apparent K+ permeability coefficient of 8 × 10−8 cms−1. The cell membrane depolarized upon removal of K+ and upon addition of ouabain, and transiently hyperpolarized beyond its initial level on return to the normal external K+ concentration. The recovery from this hyperpolarization paralleled the increase of the intracellular K activity following the re-addition of K+. Our results suggest that, despite the high K+ permeability of the Retzius cell membrane, the intracellular K activity is maintained at a high level by an electrogenic pump.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献