Patterns in mammalian muscle energetics

Author:

Kushmerick M. J.

Abstract

A description of cellular energetics of muscular contraction is given in terms of the rates and extents of high-energy phosphate splitting during contractile activity, in terms of high-energy phosphate resynthesis by respiration and net anaerobic glycolysis, and in terms of the associated uptake and/or release of H+. These chemical changes have been studied quantitatively by rapid freeze-clamping methods and by 31P-NMR methods. The pattern of chemical changes in a fast-twitch glycolytic muscle is rapid depletion of phosphocreatine and later ATP levels, cellular acidification, and a much slower rate of resynthesis of high-energy phosphate compounds during the recovery period afterwards than occurs in the slow-twitch oxidative muscles. In steady-state contractile activity below the maximal, graded levels of high-energy phosphates and of cellular respiration are achieved in both fast-twitch and slow-twitch muscles. Within the metabolic range up to the maximal aerobic capacity, which differs several-fold for different fibre types, this gradation is mediated by the creatine kinase reaction and phosphocreatine stores. Thus while the amount of enzyme present and the content of phosphocreatine differs among muscles of different types, the same general energetic function is seen to occur in all muscle cells. The creatine kinase reaction is both an energy reservoir and a buffer preventing large swings in the ATP/ADP ratios.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3