Differential role of mannose and glucose trimming in the ER degradation of asialoglycoprotein receptor subunits

Author:

Ayalon-Soffer M.1,Shenkman M.1,Lederkremer G.Z.1

Affiliation:

1. Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel, 69978.

Abstract

To gain insight into how sugar chain processing events modulate endoplasmic reticulum (ER)/proteasomal degradation we looked at human asialoglycoprotein receptor polypeptides H2a and H2b, variants which differ only by an extra pentapeptide (EGHRG) present in H2a. Membrane-bound H2a is a precursor of a soluble secreted form while H2b reaches the plasma membrane. Uncleaved precursor H2a molecules are completely retained in the ER and degraded as well as a portion of H2b. Inhibition of N-linked sugar chain mannose trimming stabilized both variants. In contrast, inhibition of glucose trimming with castanospermine greatly enhanced the degradation rate of H2a but not that of H2b. We studied a possible involvement of the ER chaperone calnexin, as inhibitors of glucose trimming are known to prevent calnexin binding. Incubation of cells with low concentrations of castanospermine (30 microg/ml) did not interfere with calnexin binding to H2a while causing the same accelerated degradation as high concentrations (>100 microg/ml) which did inhibit the association. Castanospermine treatment after calnexin binding blocked the dissociation of the chaperone but still caused accelerated degradation. The increased degradation could be blocked by a specific proteasome inhibitor, ZL(3)VS. Our results suggest that extensive mannose trimming or retention of glucose residues due to lack of glucose trimming are signals for ER/proteasomal degradation independent of interaction with calnexin.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3