Chlamydia infection of epithelial cells expressing dynamin and Eps15 mutants: clathrin-independent entry into cells and dynamin-dependent productive growth

Author:

Boleti H.1,Benmerah A.1,Ojcius D.M.1,Cerf-Bensussan N.1,Dautry-Varsat A.1

Affiliation:

1. Unite de Biologie des Interactions Cellulaires, Institut Pasteur, URA CNRS 1960, rue du Dr Roux, France. hboleti@pasteur.fr

Abstract

Chlamydiae enter epithelial cells via a mechanism that still remains to be fully elucidated. In this study we investigated the pathway of entry of C. psittaci GPIC and C. trachomatis LGV/L2 into HeLa cells and demonstrated that it does not depend on clathrin coated vesicle formation. We used mutant cell lines defective in clathrin-mediated endocytosis due to overexpression of dominant negative mutants of either dynamin I or Eps15 proteins. When clathrin-dependent endocytosis was inhibited by overexpression of the dynK44A mutant of dynamin I (defective in GTPase activity), Chlamydia entry was not affected. However, in these cells there was a dramatic inhibition in the proliferation of Chlamydia and the growth of the chlamydia vacuole (inclusion). When clathrin-dependent endocytosis was inhibited by overexpression of an Eps15 dominant negative mutant, the entry and growth of Chlamydia was unaltered. These results indicate that the effect on the growth of Chlamydia in the dynK44A cells was not simply due to a deprivation of nutrients taken up by endocytosis. Instead, the dominant-negative mutant of dynamin most likely affects the vesicular traffic between the Chlamydia inclusion and intracellular membrane compartments. In addition, cytochalasin D inhibited Chlamydia entry by more than 90%, indicating that chlamydiae enter epithelial cells by an actin-dependent mechanism resembling phagocytosis. Finally, dynamin is apparently not involved in the formation of phagocytic vesicles containing Chlamydia.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3