XMAP230 is required for normal spindle assembly in vivo and in vitro

Author:

Cha B.1,Cassimeris L.1,Gard D.L.1

Affiliation:

1. Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.

Abstract

XMAP230 is a high molecular mass microtubule-associated protein isolated from Xenopus oocytes and eggs, and has been recently shown to be a homolog of mammalian MAP4. Confocal immunofluorescence microscopy revealed that XMAP230 is associated with microtubules throughout the cell cycle of early Xenopus embryos. During interphase XMAP230 is associated with the radial arrays of microtubules and midbodies remaining from the previous division. During mitosis, XMAP230 is associated with both astral microtubules and microtubules of the central spindle. Microinjection of affinity-purified anti-XMAP230 antibody into blastomeres severely disrupted the assembly of mitotic spindles during the rapid cleavage cycles of early development. Both monopolar half spindles and bipolar spindles were assembled from XMAP230-depleted extracts in vitro. However, spindles assembled in XMAP230-depleted extracts exhibited a reduction in spindle width, reduced microtubule density, chromosome loss, and reduced acetylation of spindle MTs. Similar defects were observed in the spindles assembled in XMAP230-depleted extracts that had been cycled through interphase. Depletion of XMAP230 had no effect on the pole-to-pole length of spindles, and depletion of XMAP230 from both interphase and M-phase extracts had no effect on the rate of microtubule elongation. From these results, we conclude that XMAP230 plays an important role in normal spindle assembly, primarily by acting to stabilize spindle microtubules, and that the observed defects in spindle assembly may result from enhanced microtubule dynamics in XMAP230-depleted extracts.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3